SUPPLEMENT A.

Papers graded ‘C’ and excluded, with reason for ‘C’/exclusion

Reason: Long recall period

Reason: Long recall period

Reason: Intervention diet not clearly defined, fish intake not reported in sufficient detail

Reason: Source population not well defined. Fish intake not reported in sufficient detail

Reason: Endpoints are intermediate

Reason: The study is focused on dietary cholesterol, and not on fish intake

Reason: Weak on inclusion and ascertainment of confounding factors

Reason: Fish intake not reported in sufficient detail

Reason: Several weaknesses, particularly fish intake not reported in sufficient detail, and weak on inclusion and ascertainment of confounding factors

Reason: Weak on inclusion and ascertainment of confounding factors

Reason: Response rate not reported/not acceptable, and dietary pattern nor relevant for the Norwegian population

Reason: Study design not suited to test the research hypothesis

Reason: Study design not suited to test the research hypothesis, response rate not reported/acceptable, weak on defining confounding factors, by chance findings not considered.

Reason: Wrong study design (cross-sectional)

Reason: Research question not clearly formulated, study design not suited to test the research hypothesis, fish intake not well described, and confounding factors not well reported and handled

Reason: Unclear aim, multiple hypotheses. Fish included primarily as a source of iodine. Unclear whether confounding factors were taken into account

Reason: Study design not suited to test the research hypothesis

Reason: High drop-out

Reason: Fish consumption only divided into consumers/non-consumers

Reason: Fish consumption only continuous variable

Reason: Study design not suited to test the research hypothesis, source population not clearly defined, response rate not reported/not acceptable, fish intake not described in sufficient detail, weak confounder description/handling

Reason: Fish intake not relevant for the Norwegian diet. Weak in the description of methods such as period of data collection and case status

Reason: Lack of proper statistics, study population was stratified in a particular manner but the methodology to correct for this was not available

Reason: Research question not well defined, outcome not well described, inclusion/exclusion criteria not well defined

Reason: Fish consumption only divided into consumers/non-consumers

Reason: The study design is not suited to test the research hypothesis, and confounders were not adequately handled

Reason: The primary exposure was cord blood mercury, fish intake was assessed and taken into account, but no associations between fish intake and outcomes were reported

Reason: Confounding factors could not be identified, and no adjustments are performed

Reason: The research question is not well defined

Reason: Exposure is not adequately described

Reason: The study population is not suited to contribute generalizable evidence on the health effects of fish consumption since those exposed to fish were highly exposed to an environmental toxicant

Reason: Lacking information on the FFQ related to fish exposure. Recall bias uncertain

Reason: The modelling is not well described

Reason: Pilot study. Unclear if conditional log regression has been used. Possible selection bias, and fish intake dichotomized

Reason: Period of recruitment not well defined, case status not clearly ascertained, criteria for inclusion/exclusion not well described, recall bias not considered, and confounders not adequately handled

Reason: Mechanistic study

Reason: Research question not clearly formulated, insufficient number of outcomes/cases (small study population)

Reason: Several weaknesses, low quality method for diet registration, no total energy adjustment, and no BMI reported. Selection criteria unclear

Reason: Analyses is performed on group-level and cannot be included

Reason: The study design is not suited to test the research hypothesis (cross-sectional for adults, retrospective for children)

Reason: Confounders not well ascertained or considered

Reason: Recall bias is not considered, cases are not only incident cases (also prevalence)

Reason: The study design is not suited to test the research hypothesis

Lv Y., Kraus V.B., Gao X., Yin Z., Zhou J., Mao C., Duan J., Zeng Y., Brasher M.S., Shi W., Shi X. (2019) Higher dietary diversity scores and protein-rich food consumption were associated with lower risk of all-cause mortality in the oldest old.

Reason: Fish intake is only categorized as consumers/non-consumers

Reason: Have only included self-caught fish. Several confounders relevant for the outcome has not been ascertained (e.g., folate status). Low number of study participants to study this particular outcome

Reason: Fish intake is not relevant for Norwegian diet. Cross-sectional design.

Reason: Low responser rate (17%) and a population that is not representative. No power calculation, low power due to low sample size

Reason: The study design is not suited to answer the research question. Questionable sampling, no response rate reported, high attrition, no power calculation, small sample, unclear statistics

Reason: Fish intake not well described, unclear objective and unclear statistics

Reason: Low response rate. Very small study sample, unclear statistics

Reason: Selection bias, low number of cases

Reason: Analyses is of low quality, important confounders missing

Reason: Analyses is of low quality, important confounders missing

Reason: Fish intake is only described as consumers/non-consumers

Park Y. (2010) Intakes of vegetables and related nutrients such as vitamin B complex, potassium, and calcium, are negatively correlated with risk of stroke in Korea 4:303-10.

Reason: Study focusing on vegetables and nutrients, not fish

Reason: Fish intake is only described as consumers/non-consumers

Reason: The study design is not suitable to answer the research question. Two population samples are used, one had a population with high prevalence of depression, while the other was cross-sectional

Reason: Fish intake not described in sufficient detail, only oily fish assessed

Reason: Fish intake not described in sufficient detail, only oily fish assessed

Reason: Fish intake not described in sufficient detail

Reason: Time period of baseline examinations not clearly identified, several other weaknesses

Reason: Recall bias, dietary assessment (5Y after pregnancy)

Reason: No dietary assessment at baseline, no reported response rate, no reported compliance, small sample size

Reason: Fish intake not reported in sufficient detail

Reason: Fish intake is dichotomized (high/low) and continuous. Cannot be used for our purpose

Reason: The study was based on a prospective follow up of participants in a cohort, but the data regarding fish consumption and HSCL-25 were collected cross-sectionally

Reason: Important confounders are not ascertained

Reason: Fish intake is not linked to the outcome

Reason: Fish intake and outcome is not examined in the same group of study participants

Reason: Assessment of fish intake and outcome was assessed at the same time point in pregnancy (week 32).

Reason: Important confounders are missing, FFq not validated, only fatty fish included

Reason: Exposure groups are based on the age at fish introduction, not fish intake amounts

Reason: Intermediate endpoint

Reason: The diet is reported by relatives after cases’ deaths

Reason: Important confounders not ascertained. Analyses unadjusted, only p-values